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Abstract
A semi-classical model is built to study the dynamical behaviour of many-
electron wavefunctions interacting with strong fields for applications such as
the interaction of a laser beam with a high-Z gas at high intensity or the
collision between two heavy ions in the intermediate velocity regime. Within
the semi-classical model, quantum dynamics of the electrons is described from
generalized coordinates, which, as a result of a variational principle, obey
classical Lagrange equations. The formalism is first applied to hydrogen ions
and then extended to many-electron systems.

PACS numbers: 31.15.Qg, 34.10.+x

1. Introduction

For various applications there is a need to accurately describe the dynamical behaviour of
many-electron atomic systems interacting with strong fields. When the field strength is
comparable with the nuclear one during a time larger than the inverse of the electron binding
energy, expressed in atomic units, perturbation theories can no longer be applied. In this
case, it is therefore necessary to numerically solve time-dependent self-consistent equations.
A high-Z ion is obviously a strongly coupled Coulomb system (SCCS). Therefore, when
considering the dynamics of heavy-ion electrons in a strong external field it is often required
to go beyond the independent electron approximation. It concerns, for example, heavy-atom
collisions in the intermediate velocity regime. Using Monte Carlo classical trajectories, it
was shown in [1] that multi-ionization processes could significantly affect heavy-ion beam
dynamics. Another important application is the interaction of heavy atoms with high-intensity
laser beams. For XUV lasers created by optical field ionization (OFI) of a high-Z gas [2], it is
necessary to determine precisely the energy distribution of the hot pumping electrons created
by OFI, currently calculated within the one active electron model of [3]. One powerful model
to treat the dynamics of a SCCS is the time-dependent density functional theory (TD-DFT)
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that has been applied both in atomic systems and in plasmas. The main problem with the
TD-DFT is that it can describe the evolution of only an average configuration and also that the
calculation is performed on a fixed grid, with which it is difficult to consider large variations
of the electronic properties such as those induced by a strong external field. Recently, a
new approach was applied in a strongly coupled plasma based on the Gaussian wave packet
molecular dynamic (GWPMD) [4]. The main advantage of the GWPMD is that the electron
wavefunction in phase space is centred at the average values both for the position and for the
velocity spaces. As a first approach of GWPMD for atomic systems, we restrict ourselves
here to the same model as in [4] of one Gaussian wave packet per electron. As shown below
this model already yields interesting results for treating an atomic system interacting with a
strong field. (Atomic units will be used except when specified.)

2. Time-dependent variational principle (TDVP)

We consider a system characterized by a Hamiltonian Ĥ and a wavefunction ϕ, which depends
on several parameters qj . The evolution of the wavefunction is given by the TDVP [5] using
the following Lagrangian,

L(qj , q̇j ) =
∑

j

pj (qj )q̇j − H(qj ), (1)

where pj = 〈ϕ|i ∂
∂qj

|ϕ〉 is the conjugated momentum of qj , and H = 〈ϕ|Ĥ |ϕ〉 is the semi-
classical Hamiltonian. This variational principle allows the wavefunction evolution to be the
closest to that of the exact solution.

Equation (1) yields equations similar to the Hamilton ones with the help of the so-called
norm-matrix N defined by Nj,k = ∂pj

∂qk
− ∂pk

∂qj
:

∑
j

Nj,kq̇j = ∂H
∂qk

⇒ q̇j =
∑

k

N−1
k,j

∂H
∂qk

. (2)

This set of coupled differential equations is solved by an adaptive step size RK4 method
[6]. The accuracy of the TDVP method depends heavily on the form of the wavefunction and
on the set of parameters used.

In [4], it was shown that the TDVP based on Gaussian wavefunctions is an efficient way to
describe a SCCS, such as dense hydrogen plasmas. In this paper, the N-electron wavefunction
is described by a Slater sum of Gaussian wave packets ϕG (GWP):

ϕG(�q; �x) =
(ω

π

) 3
4

e−( ω
2 +iγ )(�x−�r)2

ei �p·(�x−�r) where �q = {ω, γ, �r, �p}. (3)

In this equation �r = 〈�x〉 and �p = 〈−i ∂
∂�x

〉
; these parameters are analogous to classical

position and momentum. The parameters {ω, γ } allow for quantum behaviour of the electron
such as charge delocalization.

3. Results

3.1. Hydrogen in a laser field

The Hamiltonian of the system proton+electron+laser field is H = − 1
2

∂2

∂�x2 − 1
|�x| + �E · �x. The

semi-classical Hamiltonian of the model in the case of GWP is

H = 〈ϕG|Ĥ |ϕG〉 = 1

2
�p2 +

3

ω
γ 2 +

ω2

4
− 1

r
erf(

√
ωr) + �E · �r. (4)
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Figure 1. Average ionization degree after interaction with the pulse versus laser intensity given
by the ADK model for different values of τ = 5, 10, 20 fs, respectively, 2, 4 and 8 laser periods.
GWPMD results are presented for τ = 10 fs.

Minimization of H when �E = �0 yields the ground state energy value of E1s = −0.424 au
which is not far from the exact value of −0.5 au. The Lagrangian given by equation (1) is
L = �̇r · �p + 3

2ω
γ̇ − H, and equation (2) leads to

�̇r = ∂H
∂ �p , �̇p = −∂H

∂�r ,
∂

∂ω

3

2ω
γ̇ = ∂H

∂ω
,

d

dt

3

2ω
= −∂H

∂γ
. (5)

The equations for (�r, �p) are similar to those given by classical Newton’s laws for a particle
evolving in the semi-classical potential − 1

r
erf(

√
ωr) + �E · �r . Moreover, equations for (γ, ω)

can also be derived from probability current conservation ∂ρ

∂t
+ �∇ · �j = 0.

We test the TDVP model behaviour in the case of OFI of hydrogen and compare it to the
ADK model [3], commonly used for OFI problems. We have considered a linearly polarized
laser field, the amplitude of which is �E = E0 �ux cos(2πct/λ) sin2(πt/τ), with a laser wave
length value of λ = 800 nm and a laser pulse duration τ = nλ/c ( n = 2, 4, . . .). Results of
the ADK model are reported in figure 1 for the values of τ = 5, 10 and 20 fs.

We can see in figure 1 that the ionization threshold of GWPMD is close to the quantum
result, but as in the classical case, the average ionization degree after interaction with the laser
pulse could only be either 0 or +1. We can also remark that the GWPMD yields an ionization
probability that is less dependent on the laser duration than the ADK results.

3.2. N-electron wavefunction applications

Now we study a heavy atom as a nucleus of charge Z surrounded by N electrons, which
are described by a N-electron wavefunction ϕ( �x1, . . . , �xN), interacting with a time-dependent
laser field. The Hamiltonian is H = ∑N

i=1

{− 1
2

∂2

∂�x2
i

− Z
|�xi | + �E(t) · �xi

}
+

∑
i,j

1
|�xi−�xj | . The

N-electron wavefunction is built with a Slater sum of one-electron GWP ϕG(�qi; �xi). As shown
in [4], the calculation of the semi-classical H leads us to

H =
N∑

i=1

H(1)
i +

∑
i,j

erf(
√

ωi,j ri,j )

ri,j

+
N∑

i=1

�E(t) · �ri + Hexc, (6)
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Figure 2. (a) Ground state energy of atoms versus Z. Comparison with DFT-LDA calculations.
(b) Study of the OFI of a xenon atom, ion charge versus laser intensity. The curve represents ADK
model results, bars are for GWPMD results.

where H(1)
i is the one-electron semi-classical Hamiltonian,

H(1)
i = �p2

i

2
+

3

ωi

γ 2
i +

ω2
i

4
− Z

ri

erf(
√

ωiri), (7)

1
ωi,j

= 1
ωi

+ 1
ωj

, and where the exchange-correlation term Hexc comes from the part of the
wavefunction due to anti-symmetrization. To calculate this term, a two-body approximation
was made, as suggested in [4] which takes the form

Hexc =
∑
i,j

T exc
i,j , T exc

i,j = f
(
ωi, ωj ,	

2
i,j

)
e−	2

i,j (8)

where 	2
i,j = ωiωj

ωi+ωj
r2
i,j + 1

ωi+ωj
p2

i,j . We can see that this term acts as a repulsion term in phase
space for two electrons having the same spin.
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Let us consider the ground state configuration. Within the GWPMD model, the ground
state configuration can be determined by minimizing the semi-classical Hamiltonian H = 〈Ĥ 〉
given by (6) with �E = 0. In figure 2(a) we report results of H minimization considering
two Gaussian wave packets (spins up and down) for each shell (only exchange correlations
between shells are considered here) together with those obtained with the DFT with local
density approximation (LDA) [7]. We can observe in figure 2(a) that although very crude, the
GWPMD model yields results which are in much better agreement with those of the DFT than
with the Thomas–Fermi model.

As an example of GWPMD for the dynamical problem, using (6)–(8), we have studied the
OFI of a xenon atom. We have considered the eight (5s–5p) electrons, whereas the electrons
in the inner shells are described by fixed GWPs. In figure 2(b), we have reported the GWPMD
and ADK results for the evolution of the average ionization degree of the xenon atom after
interacting with a 40 fs laser pulse, in terms of the laser intensity. We can see in figure 2(b)
that, again despite the very crude approximation used for the one-electron wavefunction, the
good order of magnitude of ionization threshold is recovered by the GWPMD.

4. Conclusion

We have shown that the TDVP based on a Gaussian wavefunction can provide a valuable
framework to study, using an ab initio method, the dynamics of atomic strongly coupled
Coulomb systems. Using the TDVP together with the simplest shape of a Gaussian wave
packet, one can already obtain a realistic description of the SCCS dynamics. Work is in
progress to improve the accuracy of the model by introducing linear combinations of Hermite
Gaussian wave packets.
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